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The number of preference orderings:
a recursive approach

BEN EGGLESTON

1.   Introduction
In modern society, voting is ubiquitous: it determines the outcomes of

elections, the rankings of sports teams in many leagues, and the winners of
the Oscars.  Vast sums of money, not to mention questions of war and
peace, turn on the voting systems used in these and other contests.  Thus, the
formulation of voting systems is a prime example of a mathematical
problem that also has substantial real-world implications.

A voting system is, essentially, a function.  A simple kind of voting
system takes voters' top choices (for example, each voter's favourite
candidate for some office) as its input and produces a social choice (the
winner of the election) as its output.  Here, though, we will understand
voting systems more robustly: we will say that a voting system asks each
voter not just to indicate his or her top choice, but to rank all of the
candidates, from best to worst, and then produces a ranking of all of the
candidates as its output.  A ranking of all of the alternatives available in
some context is called a preference ordering.  With this term in hand, then,
we can say that a voting system is a function that takes a set of individual
preference orderings (the voters' respective preference orderings) as its input
and produces a preference ordering (hopefully one that deserves to be called
the collective preference ordering) as its output.

One of the challenges facing the designer of any voting system is to
ensure that it will yield an intuitively acceptable output for any possible
input; that is, for any possible set of individual preference orderings.  To
meet this challenge, the designer may wish to have some sense of the
number of different preference orderings that are possible, given some
number of alternatives for the voters to choose among.  Thus, it is natural to
ask: Given a set of  alternatives, how many preference orderings are there?n

This problem is relatively simple if we can assume that, in every voter's
preference ordering, every alternative will be ranked as either better or
worse than every other alternative: that is, no two (or more) of the
alternatives will be tied in any voter's preference ordering.  In other words,
we assume that no voter is indifferent between any two (or more) of the
alternatives.  It is well known that if we make this assumption, then a set of
 alternatives gives rise to  preference orderings, since the voter can

choose any of the  alternatives as his or her first choice, any of the
remaining  alternatives as his or her second choice, and so on, down to
having just 1 alternative remaining as his or her  choice.

n n!
n

n − 1
n th

But a voting system must accommodate the fact that a voter may well
have two (or more) alternatives tied for first place, or tied at some place
further down in his or her preference ordering.  In other words, a voting
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system must accommodate indifference.  And when indifference is
permitted, the number of preference orderings increases dramatically.  But
whereas the formula  is obvious, the analogous formula that allows for
indifference is less well known.  In this paper, I briefly review the prevalent
approach to this problem, and then explain a less familiar approach that has
certain advantages over the prevalent one.

n!

2.   The prevalent approach: permutations of partitions
The prevalent approach to this problem (see, e.g., [1, p. 65]) is based on

the fact that the construction of a preference ordering from a set of
alternatives can be understood as a sequence of two decisions: a decision
about which subsets to partition the  alternatives into, followed by a
decision about the order in which to put those subsets.  In effect, this
approach involves grouping any alternatives that are equally good (thereby
determining how many ‘levels’ the preference ordering is going to have),
then placing the groups in order from best to worst.  (When we do the
second step, of putting the groups into some order, no group can be tied with
any other.  Indifference was supposed to be fully accounted for in the first
step.)  The alternatives are partitioned, and then the partitions are permuted.

n

n

Let us ascertain how many ways of doing this there are.  As mentioned,
we start with a decision about which subsets to partition the alternatives
into.  This perforce implies a decision abouthow many subsets to partition
the alternatives into.  Conveniently, this concept is captured by the Stirling
numbers of the second kind.  In particular,  is the number of ways of
partitioning  alternatives into  subsets.  Below, we will bring in the
formula for , but for now let us leave  unanalysed.

S(n, k)
n k

S(n, k) S(n, k)
Once we have selected some number of subsets  into which to partition

the  alternatives, we know that we have  partitionings to choose
among.  We also know that regardless of which of the partitionings we
choose,  subsets will result, which follows from the meaning of , after all,
and we have to put them into some order or other.  Since we can choose any
of the  subsets to be the first group, any of the remaining  subsets to
be the second group, any of the remaining  subsets to be the third
group, and so on, the subsets can be ordered in any of  ways.  Thus, once
we have decided to partition the  alternatives into  subsets, there are

 possible preference orderings that could result.

k
n S(n, k)

k k

k k − 1
k − 2

k!
n k

k! S(n, k)
Now, in choosing the value of , we can choose any value from 1 to .

So, the number of possible preference orderings is  when ,
plus  when , plus all the values of  up to .
Thus, letting  be the number of preference orderings when there are
alternatives, we have the following formula for :

k n
k! S(n, k) k = 1

k! S(n, k) k = 2 k! S(n, k) k = n
f (n) n

f (n)

∑
n

k = 1

k! S(n, k) . (1)

Finally, let us eliminate the explicit reference to the Stirling numbers of the
second kind by bringing in the formula for :S(n, k)
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1
k! ∑

k

i = 0

(−1)i ( ) (k − i)n .k
i

(See [2, p. 43].  Also see [3].  For explanation of the  notation, see [2,

p. 4] or [4].)  Substituting this formula for  in formula (1), we have
the following:

( )k
i

S(n, k)

∑
n

k = 1

k!
1
k! ∑

k

i = 0

(−1)i ( ) (k − i)n .k
i

This obviously simplifies to the following:

∑
n

k = 1
∑

k

i = 0

(−1)i ( ) (k − i)n . (2)k
i

This is the formula for  that follows from the partitioning approach to
this problem.

f (n)

This approach has several merits: it is logically sound; it is based on an
intuitive way of addressing the problem (i.e. grouping the alternatives and
then ordering the groups); and it yields a formula whose operations are
agreeably elementary, involving nothing more advanced than the choose
function (itself easily reduced to factorials, of course).  Moreover, further
work has elucidated the formula's asymptotic equivalent [5], and the error
estimate involved in it [6].

This approach, however, is not the only fruitful way of addressing this
problem, and I turn now to a less familiar approach.  I explain this approach
by examining the cases in which  equals 1, 2, and 3, then generalising to
the case of an arbitrary value of , and finally illustrating the application of
the general formula to the case .

n
n

n = 4

3.    The recursive approach suggested and derived
Starting with the case of one alternative, we immediately find that this case is

trivial.  When there is just one alternative, there is just one preference ordering:

 a 

TABLE 1
So, we have .f (1) = 1

The case of two alternatives is also pretty simple.  But for reasons that
we will consider later, we will here break it down into two steps.  First, let
us look at the preference orderings that we can make if we start with just one
alternative on the first level (i.e. preference orderings in which there are not
any ties for first place).  We can start with  or :a b

 a  b 

… …

TABLE 2
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Since we have just two alternatives, each of the preference-ordering stems in
this table can be completed in just one way.  So we have the following
preference orderings:

 a  b 

b a

TABLE 3

So that's it for the preference orderings that have just one alternative on
the first level.  There are two of those.  We also have the following
preference ordering, with both alternatives on the first level:

 a, b 

TABLE 4

Obviously there is just one of those.  So, when there are two alternatives, the
number of preference orderings is , or 3.  So .2 + 1 f (2) = 3

Things get a little more complicated when there are three alternatives.
First, let us look at the preference orderings that we can make if we start
with just one alternative on the first level (i.e. preference orderings in which
there are not any ties for first place).  We can start with  or :a, b c

 a  b  c 

… … …

TABLE 5

Let us continue each of these preference-ordering stems by putting just
one alternative on the second level in each preference ordering:

 a  a  b  b  c  c 

b c a c a b

… … … … … …

TABLE 6

Since we have just three alternatives, each of the preference-ordering
stems in this table can be completed in just one way.  So we have the
following preference orderings:

 a  a  b  b  c  c 

b c a c a b

c b c a b a

TABLE 7
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In Table 5, we had some preference-ordering stems that we extended (in
Table 6) by putting just one alternative on the second level.  If we extend
those stems differently, by putting two alternatives on the second level, we
have the following three preference orderings:

 a  b  c 

b, c a, c a, b

TABLE 8

So that's it for the preference orderings that have just one alternative on
the first level.  There are nine of those.  Now let us look at the preference
orderings that we can make if we start with two alternatives on the first
level:

 a, b  a, c  b, c 

… … …

TABLE 9

Since we have just three alternatives, each of these preference-ordering
stems can be completed in just one way.  So, we have the following
preference orderings:

 a, b  a, c  b, c 

c b a

TABLE 10

And that's it for the preference orderings that have two alternatives on
the first level.  There are three of those.  Finally, there's the preference
ordering in which all three alternatives are on the first level:

 a, b, c 

TABLE 11

Obviously there's just one of those.  So the total number of preference
orderings when there are three alternatives is , or 13.  So

.
9 + 3 + 1

f (3) = 13
Now, having derived this result (13 preference orderings for three

alternatives) in the manner just employed, let us reconsider the case of three
alternatives and observe that it can be handled in a manner that shows how
we can generalise from this case to the case of an arbitrarily large number of
alternatives.  To begin, we found that when there are three alternatives, there
are 9 preference orderings that have one alternative on the first level.  We
did this by exhaustively filling out and counting those preference orderings.
But we could have taken a shorter (albeit less obvious) route, consisting of
two steps.



26 THE MATHEMATICAL GAZETTE

The first step skips the enumeration of ,  and  (the three alternatives)
as the ways of beginning preference orderings that have one alternative on
the first level (as in Table 5) and observes that if we are going to start with
one alternative on the first level, the number of ways of proceeding is the

number of ways of choosing one alternative from a set of three, or .  (It is

tempting to express this as just 3, without using combinatorial notation, but
we will need the flexibility provided by combinatorial notation when we
want to have more than one alternative on the first level.)

a b c

( )3
1

The second step skips the concrete completion of any preference-
ordering stems (for there are no stems, following our new first step) and
observes that if we had a preference-ordering stem with one alternative on
the first level, then it could be completed by placing, below it, any of the
preference orderings that consist of the remaining two alternatives.  That is,
the number of ways of completing this second step is .  (Combinatorial

notation, e.g. , is unnecessary here because we will not have occasion

to imagine completing a hypothetical preference-ordering stem by choosing
more than one of the ways of putting the remaining alternatives into a
preference ordering.)

f (2)

( )f (2)
1

Since we have  ways of completing the first step, and  ways of

completing the second step, we have  ways of completing the two

steps together.  Since  and we found above that , we have

9 ways of completing this two-step process.  That, of course, accords with
our earlier count of 9.

( )3
1

f (2)

( ) f (2)3
1

( ) = 3
3
1

f (2) = 3

Similar reasoning can account for the 3 that appears in the expression of
 that yields the 13 for the case of three alternatives.  That 3 is the

number of preference orderings that have two alternatives on the first level,
and so the first step involves the number of ways of choosing two

alternatives from a set of three, or .  The second step, in turn, involves the

number of preference orderings containing the remaining alternative that can
be put below the two alternatives already chosen for the first level.  This
number, of course, is .  Putting these two steps together, we have

.  Since  and we found above that , we have 3

ways of completing this process.  Again, this accords with our earlier count.

9 + 3 + 1

( )3
2

f (1)

( ) f (1)3
2 ( ) = 3

3
2

f (1) = 1

We have accounted for the first two summands that appear in the
expression of  that yields the sum of 13 for the case of three
alternatives.  The third summand, the 1, is fully accounted for by using just

9 + 3 + 1
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the first step of the two-step process we have been describing.  For that step
involves the number of ways of choosing some number of alternatives from
the total set of alternatives, and the 1 corresponds to the case of putting all

three alternatives on the first level.  That, of course, is just .  Once we

have chosen all three alternatives and put them on the first level, our
preference ordering of three alternatives is complete.  There is no remaining
step corresponding to the second step of the two-step process described
above.

( )3
3

So, the 13 we seek to explain can be written not just as , but
more illuminatingly as follows:

9 + 3 + 1

( ) f (2) + ( ) f (1) + ( ) .3
1

3
2

3
3

Notice that each term except the final one has two factors: the first factor
represents choosing some number of alternatives to put on the first level,
and the second factor represents the different ways putting the remaining
alternatives into a preference ordering below the first level (so that the first
level and the preference ordering placed below it will together amount to a
preference ordering of all of the alternatives in question).  Generalising from
this, it is clear that  can be expressed as follows:f (n)

( )f (n − 1) + ( )f (n − 2) + ( )f (n − 3) +  …  + ( )f (1) + ( ). (3)n
1

n
2

n
3

n
n − 1

n
n

This captures the idea that when there are  alternatives to be put into a
preference ordering, there are  different sets of preference orderings to
count up.  There is the set of preference orderings that have just 1 of the

alternatives on the first level, and there are  of those; and there

is the set of preference orderings that have 2 of the  alternatives on the first

level, and there are  of those, and so on, through the set of

preference orderings that have all  alternatives on the first level, and there

are  of those.

n
n

n

( ) f (n − 1)n
1

n

( ) f (n − 2)n
2

n

( )n
n

All of the terms of expression (3) could be condensed using summation
notation if the final term could be made to complete the series suggested by
the previous ones.  Obviously what the final term needs, in order to be

expressed in that way, is the additional factor of  after .  And  can

be rewritten as  if we simply stipulate that .  So, let us

rewrite expression (3) as follows:

f (0) ( )n
n ( )n

n

( ) f (0)n
n

f (0) = 1
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( )f (n − 1) + ( )f (n − 2) + ( )f (n − 3) +  …  + ( )f (1) + ( )f (0),  (4)n
1

n
2

n
3

n
n − 1

n
n

where .  Now, condensing expression (4) using summation
notation, we have the following formula for :

f (0) = 1
f (n)

∑
n

i = 1
( ) f (n − i) , where f (0) = 1. (5)n
i

4.   Application to four alternatives
To illustrate the operation of this formula, let us apply it to a slightly

more complex case than the one from which we derived it.  When we have
four alternatives, expression (5) becomes the following:

∑
4

i = 1
( ) f (4 − i) , where f (0) = 1.4
i

And this, in turn, is equal to the following:

( ) f (3) + ( ) f (2) + ( ) f (1) + ( ) f (0) , where f (0) = 1.4
1

4
2

4
3

4
4

Implementing the stipulation that , we have the following:f (0) = 1

( ) f (3) + ( ) f (2) + ( ) f (1) + ( ) .4
1

4
2

4
3

4
4

Let us quickly evaluate and interpret each of these four terms:

• The first, , is 52, and reflects the fact that if we have four

alternatives and can choose one to put on the first level, then we

have , or 4, ways of doing that, followed by , or 13, ways

of putting the remaining three alternatives into a preference
ordering below the alternative on the first level.

( ) f (3)4
1

( )4
1

f (3)

• The second term, , is 18, and reflects the fact that if we

have four alternatives and can choose two to put on the first

level, then we have , or 6, ways of doing that, followed by

, or 3, ways of putting the remaining two alternatives into a
preference ordering below the two on the first level.

( ) f (2)4
2

( )4
2

f (2)

• The third term, , is 4, and reflects the fact that if we have

four alternatives and can choose three to put on the first level,

( ) f (1)4
3
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then we have , or 4, ways of doing that, followed by , or

1, way of putting the remaining alternative into a preference
ordering below the three on the first level.

( )4
3

f (1)

• Finally, the fourth term, , is 1, and reflects the fact that there

is just one preference ordering in which all four alternatives are
put on the first level.

( )4
4

So , or 75.f (4) = 52 + 13 + 4 + 1

5.    The recursive approach vs. the partitioning approach
Recall the two formulas for the number of preference orderings derived

in the previous sections:

∑
n

k = 1
∑

k

i = 0

(−1)i ( ) (k − i)n , (2)k
i

∑
n

i = 1
( ) f (n − i) , where f (0) = 1. (5)n
i

Expression (2) is the formula provided by the partitioning approach, while
expression (5) is the formula provided by the recursive approach explained
above.

As we noted in introducing the partitioning approach, it is the prevalent
approach; it can be found in virtually every standard combinatorics textbook.
Sometimes the recursive formula is listed as being equivalent to the
partitioning one, but it is typically inferred from the partitioning formula rather
than derived directly as in section 3 above.  Thus, even when the recursive
approach is presented, there is often little attention given to its underlying
method (of putting some alternatives on the first level and then putting the
remaining alternatives into a preference ordering below the first level).

The sequence of numbers generated by expressions (2) and (5) is the
subject of [7].  There, expression (5) is preceded by ‘E.g.f.: 1/(2-exp(x))’,
suggesting that it is derived from the exponential generating function,
derived, in turn, from the partitioning formula, presumably.  The recursive
formula is also listed as being equivalent to the partitioning one (for the
related problem of the number of unordered partitions) in some earlier
works; see [8, p. xxii]; and [9, p. 210] (citing [8]).  The recursive formula is
also mentioned, but not explained, in [10, p. 40].

Might this relative neglect of the recursive approach be warranted?
After all, as we noted after reviewing the partitioning approach, this
approach has several merits, and of course in most situations, non-recursive
formulas are decidedly preferable to recursive ones.  However, several
considerations suggest that the recursive approach may well deserve equal
standing with the partitioning one.
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First, expression (5) shares many of the merits mentioned in connection
with expression (2) at the end of section 2.  For example, in addition to
being logically sound, it is based on an intuitive way of addressing the
problem (i.e. building longer preference orderings from shorter ones) and it
yields a formula containing no operation more advanced than the choose
function.

Second, although recursive expressions often require lengthier
calculations than non-recursive ones (due to the necessity of calculating the
values that precede the desired one), the reverse is actually the case here.
When expression (2) is used, the number of terms to be computed and
summed can be counted as follows:

k i terms

1 0,1 2

2 0,1,2 3

3 0,1,2,3 4

… … …

n − 1 0,1,2,3, … , n − 1 n

n 0,1,2,3, … , n − 1, n n + 1

TABLE 12

The number of terms is the sum of the numbers in the last column of this
table.  Because , the sum of the
numbers just mentioned is .  When expression (5) is used, the
number of terms can be counted as follows:  is just 1 (but let us regard
this as a term, for counting purposes); then, with that computed, it takes 2
terms to compute ; then, with that computed, it takes 3 terms to compute

, and so on.  So, computing  from scratch can be regarded as
requiring  terms.  As we just saw, this series is
known to sum to .  So, expression (5) arguably involves  fewer
terms than expression (2).  Admittedly, this advantage might be regarded as
cancelled by the extra record-keeping demands of expression (5): rather than
just maintaining a running total, as with expression (2), a user of expression
(5) must keep a list of already-computed values of .  Nevertheless, at the
very least, the recursive approach would appear to be on a par with the
partitioning one, in terms of computational efficiency.

1 + 2 + 3 +  …  + (n − 1) + n = 1
2 (n2 + 1)

1
2 (n2 + n) + n

f (1)

f (2)
f (3) f (n)

1 + 2 + 3 +  …  + (n − 1) + n
1
2 (n2 + n) n

f (•)

Third, although this record-keeping consideration complicates the
recursive approach's computations in one way, it has another aspect that
redounds to the distinct advantage of the recursive approach.  When a task
requires calculating  for multiple values of , expression (5) enjoys a
marked advantage over expression (2).  When  is being calculated for
some , values of  for numbers smaller than  have no role to play in

f (n) n
f (n)

n f (•) n
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expression (2).  But in expression (5), those values of  for numbers
smaller than  can be inserted when needed in the calculation of .  To
illustrate this advantage, consider calculating  for  to .
Using expression (2),  would require 2 terms, then  would require 5
terms, then  would require 9 terms, and so on, until  requiring 65

terms.  The total number of terms is , or 275.  In contrast,

when expression (5) is used, its record-keeping component means that the
total number of terms for  to  is just the number of terms for

, which, according to the formula  from the last paragraph, is
just 55.  In this respect, the recursive approach is clearly more
computationally efficient than the partitioning approach.

f (•)
n f (n)

f (n) n = 1 n = 10
f (1) f (2)

f (3) f (10)
∑
10

n = 1

1
2 (n2 + n) + n

n = 1 n = 10
f (10) 1

2 (n2 + n)

Fourth, the intermediate sums generated in the course of using
expression (5) are at least as meaningful as those generated in the course of
using expression (2).  As we saw in section 2, using expression (2) involves
summing the number of ways of putting  alternatives into a preference
ordering with one level ( ), the number of ways of putting
alternatives into a preference ordering with two levels ( ), and so on,
up to the number of ways of putting  alternatives into a preference ordering
with  levels ( ).  This information is meaningful, but the information
involved in expression (5) is equally meaningful: every time this expression
is used to calculate , the user recapitulates the values of  from 1 to

.  Surely an illuminating way of arriving at the value of  for some
 is to see how that value is based on the values of  for all the smaller

values of .

n
k = 1 n

k = 2
n

n k = n

f (n) f (•)
n − 1 f (n)
n f (n)

n
Overall, the recursive approach has much to recommend it.  The

partitioning approach has value as well, but the recursive approach offers a
different perspective that has distinct strengths in terms of both the
efficiency and the meaningfulness of the calculations it requires.  It is an
important approach to solving the problem of the number of preference
orderings.
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