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The number of preference orderings:
a recursive approach

BEN EGGLESTON

1. Introduction

In modernsociety,voting is ubiquitous:it determineshe outcomesof
elections the rankingsof sportsteamsin manyleaguesandthe winnersof
the Oscars. Vast sumsof money, not to mention questionsof war and
peaceturnonthevoting systemsaisedin theseandothercontests.Thus,the
formulation of voting systemsis a prime example of a mathematical
problem that also has substantial real-world implications.

A voting systemis, essentially,a function. A simple kind of voting
system takes voters' top choices (for example, each voter's favourite
candidatefor someoffice) as its input and producesa social choice (the
winner of the election) as its output. Here, though, we will understand
voting systemsmore robustly: we will saythat a voting systemaskseach
voter not just to indicate his or her top choice, but to rank all of the
candidatesfrom bestto worst, and then producesa ranking of all of the
candidatesas its output. A ranking of all of the alternativesavailablein
somecontextis calleda preferenceordering With this termin hand,then,
we cansaythat a voting systemis a function that takesa setof individual
preferenceorderings(the voters'respectivepreferencerderingslasits input
andproducesa preferencerdering(hopefully onethatdeserveso be called
thecollectivepreference ordering) as its output.

One of the challengedacing the designerof any voting systemis to
ensurethat it will yield an intuitively acceptableoutput for any possible
input; that is, for any possibleset of individual preferenceorderings. To
meet this challenge,the designermay wish to have some senseof the
number of different preferenceorderingsthat are possible, given some
numberof alternativedor the votersto chooseamong. Thus,it is naturalto
ask: Given a set of alternatives, how many preference orderings are there?

This problemis relatively simpleif we canassumehat,in everyvoter's
preferenceordering, every alternativewill be ranked as either better or
worse than every other alternative: that is, no two (or more) of the
alternativeswill betied in any voter'spreferenceordering. In otherwords,
we assumethat no voter is indifferent betweenany two (or more) of the
alternatives.lt is well knownthatif we makethis assumptionthena setof
n alternativesgives rise to n! preferenceorderings,since the voter can
chooseany of the n alternativesas his or her first choice, any of the
remainingn — 1 alternativesashis or hersecondchoice,andsoon, downto
having just 1 alternative remaining as his oriintrchoice.

But a voting systemmustaccommodaté¢he fact that a voter may well
havetwo (or more) alternativestied for first place, or tied at someplace
further down in his or her preferenceordering. In otherwords, a voting
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system must accommodateindifference. And when indifference is

permitted,the numberof preferenceorderingsincreasegramatically. But

whereasthe formula n! is obvious,the analogousformula that allows for

indifferenceis lesswell known. In this paper,| briefly reviewthe prevalent
approachto this problem,andthenexplaina lessfamiliar approactthat has
certain advantages over the prevalent one.

2. The prevalent approach: permutations of partitions

The prevalentapproacho this problem(see.e.g.,[1, p. 65]) is basedon
the fact that the constructionof a preferenceordering from a set of n
alternativescan be understoodas a sequencef two decisions:a decision
about which subsetsto partition the n alternativesinto, followed by a
decision about the order in which to put those subsets. In effect, this
approachinvolves groupingany alternativeshat are equally good (thereby
determininghow many ‘levels’ the preferenceorderingis going to have),
then placing the groupsin order from bestto worst. (When we do the
secondstep,of puttingthe groupsinto someorder,no groupcanbetied with
any other. Indifferencewas supposedo be fully accountedor in the first
step.) The alternatives are partitioned, and then the partitions are permuted.

Let usascertairhow manywaysof doingthis thereare. As mentioned,
we start with a decisionaboutwhich subsetsto partition the alternatives
into. This perforceimplies a decisionabouthow manysubsetdo partition
the alternativesnto. Conveniently this conceptis capturedby the Stirling
numbersof the secondkind. In particular,S(n, k) is the numberof ways of
partitioning n alternativesinto k subsets. Below, we will bring in the
formula forS(n, k), but for now let us leav8(n, k) unanalysed.

Oncewe haveselectedsomenumberof subsetk into which to partition
the n alternativeswe know that we have S(n, k) partitioningsto choose
among. We also know that regardlessof which of the partitioningswe
choosek subsetaill result,which follows from the meaningof k, afterall,
andwe haveto puttheminto someorderor other. Sincewe canchooseany
of thek subsetdo bethefirst group,any of theremainingk — 1 subsetgo
be the secondgroup, any of the remainingk — 2 subsetsto be the third
group,andsoon, the subsetzanbe orderedin any of k! ways. Thus,once
we have decidedto partition the n alternativesinto k subsetsthere are
k! S(n, k) possible preference orderings that could result.

Now, in choosingthe value of k, we canchooseany valuefrom 1 to n.
So, the numberof possiblepreferenceorderingsis k! S(n, k) whenk = 1,
plusk! S(n, k) whenk = 2, plusall the valuesof k! S(n, k) upto k = n.
Thus, letting f (n) be the numberof preferenceorderingswhentherearen
alternatives, we have the following formula fain):
n

Y KS(n, k. (1)

k=1
Finally, let us eliminatethe explicit referenceo the Stirling numbersof the
second kind by bringing in the formula f8¢n, k):
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(See[2, p. 43]. Also see[3]. For explanationof the(li() notation,see[2,

p. 4] or [4].) Substitutingthis formulafor S(n, k) in formula (1), we have
the following:

c 1 . i N
zklE > (-1 ('i()(k— "
k=1 *i=0

This obviously simplifies to the following:

n k Mk
> Z<-1>'(i)<k - )
k=1i=0

This is the formula for f (n) that follows from the partitioning approachto
this problem.

This approachhasseveralmerits:it is logically sound:;it is basedon an
intuitive way of addressinghe problem (i.e. groupingthe alternativesand
then ordering the groups); and it yields a formula whose operationsare
agreeablyelementary,involving nothing more advancedthan the choose
function (itself easily reducedto factorials, of course). Moreover, further
work haselucidatedthe formula'sasymptoticequivalent[5], and the error
estimate involved in it [6].

This approachhowever,is not the only fruitful way of addressinghis
problem,andl turn now to alessfamiliar approach.l explainthis approach
by examiningthe casesn which n equalsl, 2, and 3, then generalisingo
the caseof an arbitraryvalueof n, andfinally illustrating the applicationof
the general formula to the case= 4.

3. The recursive approach suggested and derived

Startingwith the caseof onealternative we immediatelyfind thatthis casels
trivial. When there is just one alternative, there is just one preference ordering:

]

TABLE 1
So, we havé (1) = 1.

The caseof two alternativeds alsopretty simple. But for reasonghat
we will considerlater,we will herebreakit downinto two steps. First, let
uslook atthe preferencerderingsthatwe canmakeif we startwith justone
alternativeon thefirst level (i.e. preferenceorderingsin which therearenot
any ties for first place). We can start wélor b:

al|b

TABLE 2



24 THE MATHEMATICAL GAZETTE

Sincewe havejust two alternativesgachof the preference-orderingtemsin
this table can be completedin just one way. So we have the following
preference orderings:

alb
b|a
TABLE 3

Sothat'sit for the preferenceorderingsthat havejust onealternativeon
the first level. There are two of those. We also have the following
preference ordering, with both alternatives on the first level:

ab

TABLE 4

Obviouslythereis justoneof those. So,whentherearetwo alternativesthe
number of preference ordering<is+ 1, or 3. Sd (2) = 3.

Thingsget a little more complicatedwhenthereare threealternatives.
First, let us look at the preferenceorderingsthat we can makeif we start
with just onealternativeon thefirst level (i.e. preferencerderingsin which
there are not any ties for first place). We can start ayithor c:

alb|c

TABLE 5

Let us continueeachof thesepreference-orderingtemsby putting just
one alternative on the second level in each preference ordering:

al|l b | bf|c
bl c|a]|c]| a

TABLE 6
Sincewe havejust three alternatives.eachof the preference-ordering
stemsin this table can be completedin just one way. So we have the
following preference orderings:

alb]|b|lc|c

blcl|lal|l]c|la]l]b

c|bflcl|lal|b]a

TABLE 7
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In Table5, we hadsomepreference-orderingtemsthatwe extendedin
Table 6) by putting just one alternativeon the secondlevel. If we extend
thosestemsdifferently, by putting two alternativeson the secondevel, we
have the following three preference orderings:

a b C
bclac|ab
TABLE 8

Sothat'sit for the preferenceorderingsthathavejust onealternativeon
thefirst level. Therearenine of those. Now let uslook at the preference
orderingsthat we can make if we start with two alternativeson the first
level:

abl|ac]|bc

TABLE 9
Sincewe havejust threealternativeseachof thesepreference-ordering
stemscan be completedin just one way. So, we have the following
preference orderings:

ab|ac]| bc

c b a

TABLE 10
And that'sit for the preferenceorderingsthat havetwo alternativeson
the first level. There are three of those. Finally, there'sthe preference
ordering in which all three alternatives are on the first level:

a b c

TABLE 11

Obviouslythere'sjust one of those. So the total numberof preference
orderings when there are three alternativesis 9 + 3 + 1, or 13. So
f(3) = 13

Now, having derived this result (13 preferenceorderingsfor three
alternativesjn the manneijust employed et usreconsidethe caseof three
alternativesandobservethatit canbe handledin a mannerthat showshow
we cangeneralisdrom this caseto the caseof anarbitrarily largenumberof
alternatives.To begin,we foundthatwhentherearethreealternativesthere
are 9 preferenceorderingsthat haveone alternativeon the first level. We
did this by exhaustivelyfilling out andcountingthosepreferenceorderings.
But we could havetakena shorter(albeit lessobvious)route, consistingof
two steps.
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Thefirst stepskipsthe enumeratiorof a, b andc (thethreealternatives)
asthe ways of beginningpreferenceorderingsthat have one alternativeon
thefirst level (asin Table5) andobserveghatif we aregoingto startwith
one alternativeon the first level, the numberof ways of proceedings the

numberof waysof choosingonealternativefrom a setof three,or i’) (Itis

temptingto expresshis asjust 3, without usingcombinatorialnotation,but
we will needthe flexibility provided by combinatorialnotation when we
want to have more than one alternative on the first level.)

The secondstep skips the concrete completion of any preference-
ordering stems(for there are no stems,following our new first step)and
observeghatif we hada preference-orderingtemwith one alternativeon
the first level, thenit could be completedby placing, below it, any of the
preferenceorderingsthat consistof the remainingtwo alternatives. Thatis,
the numberof waysof completingthis secondstepis f (2). (Combinatorial

(2

, f . ) .
notatlon,e.g( 1 , is unnecessarfierebecauseave will not haveoccasion

to imaginecompletinga hypotheticalpreference-orderingtemby choosing
more than one of the ways of putting the remaining alternativesinto a
preference ordering.)

Sincewe have( i) ways of completingthe first step,andf (2) ways of

completingthe secondstep,we have

f)f (2) ways of completingthe two

stepstogether.Since(i) = 3andwe foundabovethatf (2) = 3, we have

9 ways of completingthis two-stepprocess. That, of course,accordswith
our earlier count of 9.

Similar reasoningcanaccountor the 3 thatappearsn the expressiorof
9 + 3 + 1lthatyieldsthe 13 for the caseof threealternatives.That3 is the
numberof preferenceorderingsthathavetwo alternativeson thefirst level,
and so the first step involves the number of ways of choosing two

alternativedrom a setof three,or (g) Thesecondstep,in turn,involvesthe

numberof preferencerderingscontainingthe remainingalternativethatcan
be put below the two alternativesalreadychosenfor the first level. This
number, of course,is f (1). Putting thesetwo stepstogether,we have

3

ways of completing this process. Again, this accords with our earlier count.
We have accountedfor the first two summandsthat appearin the

expressionof 9 + 3 + 1 that yields the sum of 13 for the caseof three

alternatives. The third summandthe 1, is fully accountedor by usingjust

f (D). Since(g = 3 and we found abovethat f (1) = 1, we have 3
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thefirst stepof the two-stepprocessve havebeendescribing. For thatstep
involvesthe numberof waysof choosingsomenumberof alternativesrom
the total setof alternativesandthe 1 correspondso the caseof putting all

threealternativeson the first level. That, of course,is just g) Oncewe

have chosenall three alternativesand put them on the first level, our
preferenceorderingof threealternativess complete. Thereis no remaining
step correspondingto the secondstep of the two-step processdescribed
above.

So,the 13 we seekto explaincanbewritten notjustas9 + 3 + 1, but
more illuminatingly as follows:
f() + (3)

3 3
(1)f(2) + (2 3

Notice that eachterm exceptthe final one hastwo factors:the first factor
representchoosingsomenumberof alternativesto put on the first level,
and the secondfactor representghe different ways putting the remaining
alternativesnto a preferenceorderingbelow thefirst level (sothatthe first
level andthe preferenceorderingplacedbelowit will togetheramountto a
preferenceorderingof all of the alternativesn question). Generalisingrom
this, it is clear that (n) can be expressed as follows:

n n n n n
(1 2 3 n—1)f(1)Jr n)' &
This capturesthe idea that when there are n alternativesto be put into a

preferenceordering, there are n different setsof preferenceorderingsto
countup. Thereis the setof preferenceorderingsthat havejust 1 of then

fn-D+(_|fh-2+[ |f(n-3)+ ... +

alternativeson thefirst level, andthereare(?)f (n = 1) of those;andthere
is the setof preferenceorderingsthathave? of the n alternativeson the first
level, and there are 2 f (n — 2) of those,and so on, throughthe set of
preferenceorderingsthat haveall n alternativeson the first level, andthere

are(g) of those.

All of thetermsof expression(3) could be condensedisingsummation
notationif thefinal term could be madeto completethe seriessuggestedby
the previousones. Obviously what the final term needs,in orderto be
expressedh thatway, is the additionalfactor of f (0) after(:). And : can

be rewritten as : f (0) if we simply stipulatethatf (0) = 1. So, let us

rewrite expression (3) as follows:
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n n
1 3
where f (0) = 1. Now, condensingexpression(4) using summation
notation, we have the following formula fb¢n):

f(n-1)+ f(0), (4

g)f(n— 2)+

n
fn-3)+ ... +(n_1)f(1)+

n
n

n

Z(?)f(n — i), wheref (0) = 1. (5)

i=1

4. Application to four alternatives

To illustrate the operationof this formula, let us apply it to a slightly
more complexcasethanthe onefrom which we derivedit. Whenwe have
four alternatives, expression (5) becomes the following:

>
i—1\!
And this, in turn, is equal to the following:

4 4 4
(1)1‘ 3 + 5 3
Implementing the stipulation th&f0) = 1, we have the following:

4 4 4 4
(1)f(3) + 5 3)f(l) + ( .

f(4 - i), wheref (0) = 1.

f(2 +

f +

j)f (0), wheref (0) = 1.

f(2 + 4

Let us quickly evaluate and interpret each of these four terms:

e Thefirst, (‘11)1‘ (3), is 52, andreflectsthefact thatif we havefour
alternativesandcanchooseoneto put on thefirst level, thenwe
have(i), or 4, waysof doingthat,followed by f (3), or 13, ways

of putting the remaining three alternativesinto a preference
ordering below the alternative on the first level.
* Theseconderm, g f (2), is 18, andreflectsthe fact thatif we

have four alternativesand can choosetwo to put on the first
level, thenwe have(g), or 6, ways of doing that, followed by

f (2), or 3, waysof putting the remainingtwo alternativednto a
preference ordering below the two on the first level.

e Thethird term,(g)f (1), is 4, andreflectsthefact thatif we have

four alternativesand can choosethreeto put on the first level,
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thenwe have

g) or 4, waysof doingthat, followed by f (1), or

1, way of putting the remaining alternativeinto a preference
ordering below the three on the first level.

* Finally, thefourth term,(j), is 1, andreflectsthe fact that there

is just one preferenceorderingin which all four alternativesare
put on the first level.

Sof(4) = 52 + 13 + 4 + 1, or 75.

5. The recursive approach vs. the partitioning approach

Recallthe two formulasfor the numberof preferencenrderingsderived
in the previous sections:

n Kk K
> 2(—1>'(i)(k - )
k=1i=0
n
Z(T)f(n — i), wheref (0) = 1. (5)
i=1
Expression(2) is the formula providedby the partitioning approachwhile

expression(5) is the formula providedby the recursiveapproachexplained
above.

As we notedin introducingthe partitioning approachijt is the prevalent
approachjt canbe foundin virtually every standardcombinatoricstextbook.
Sometimesthe recursive formula is listed as being equivalent to the
partitioningone,butit is typically inferredfrom the partitioningformularather
than deriveddirectly asin section3 above. Thus, evenwhen the recursive
approachis presentedthereis often little attentiongiven to its underlying
method (of putting somealternativeson the first level and then putting the
remaining alternatives into a preference ordering below the first level).

The sequenceof numbersgeneratecby expressiong2) and (5) is the
subjectof [7]. There,expression(5) is precededoy ‘E.g.f.: 1/(2-exp(x))’,
suggestingthat it is derived from the exponential generatingfunction,
derived,in turn, from the partitioning formula, presumably. The recursive
formula is also listed as being equivalentto the partitioning one (for the
related problem of the number of unordered partitions) in some earlier
works; see[8, p. xxii]; and[9, p. 210] (citing [8]). Therecursiveformulais
also mentioned, but not explained, in [10, p. 40].

Might this relative neglectof the recursive approachbe warranted?
After all, as we noted after reviewing the partitioning approach,this
approachthasseveralmerits,andof coursein mostsituations,non-recursive
formulas are decidedly preferableto recursive ones. However, several
considerationsuggesthat the recursiveapproachmay well deserveequal
standing with the partitioning one.
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First, expressior(5) shareamanyof the meritsmentionedn connection
with expression(2) at the end of section2. For example,in addition to
being logically sound,it is basedon an intuitive way of addressinghe
problem(i.e. building longer preferenceorderingsfrom shorterones)andit
yields a formula containingno operationmore advancedhan the choose
function.

Second, although recursive expressions often require lengthier
calculationghannon-recursiveones(dueto the necessityof calculatingthe
valuesthat precedethe desiredone), the reverseis actually the casehere.
When expression(2) is used,the numberof termsto be computedand
summed can be counted as follows:

k [ terms
1 0,1 2
2 0,1,2 3
3 0,1,2,3 4

n-1 0123 ...,n-1 n
n 0123 ...,n—-1n|{n+1

TABLE 12

The numberof termsis the sumof the numbersin the last column of this

table. Becausel+2+3+ ... +(n-1)+n=3(n?+1), the sum of the

numbergust mentioneds 4 (n? + n) + n. Whenexpressior(5) is used the

numberof termscanbe countedasfollows: f (1) is just 1 (butlet usregard
this asa term, for countingpurposes)then, with that computed it takes2

termsto computef (2); then,with thatcomputedit takes3 termsto compute
f (3), and so on. So, computingf (n) from scratchcan be regardedas
requiringl+2+ 3+ ... +(n-1)+ nterms. As we just saw,this seriesis

known to sumto 4(n? + n). So, expression(5) arguablyinvolvesn fewer

termsthanexpressior(2). Admittedly, this advantagemight be regardedas
cancelledby the extrarecord-keepinglemandof expressior(5): ratherthan

just maintaininga runningtotal, aswith expression(2), a userof expression
(5) mustkeepallist of already-computedaluesof f (e). Neverthelessatthe

very least, the recursiveapproachwould appearto be on a par with the

partitioning one, in terms of computational efficiency.

Third, although this record-keepingconsideration complicates the
recursiveapproach'scomputationsin one way, it has anotheraspectthat
redoundgo the distinct advantageof the recursiveapproach. When a task
requirescalculatingf (n) for multiple valuesof n, expression5) enjoysa
markedadvantageover expression2). Whenf (n) is being calculatedfor
somen, valuesof f (¢) for numberssmallerthann haveno role to play in
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expression(2). But in expression(5), thosevaluesof f (e) for numbers
smallerthann canbe insertedwhenneededn the calculationof f (n). To
illustrate this advantagegonsidercalculatingf (n) for n = 1 to n = 10.
Usingexpressior(2), f (1) would require2 terms,thenf (2) would require5
terms,thenf (3) would require9 terms,andso on, until f (10) requiring 65

10
terms. Thetotal numberof termsis Z‘,l%(n2 + n) + n, or 275. In contrast,
n=

when expression5) is used,its record-keepingcomponenimeansthat the
total numberof termsfor n = 1ton = 10 is just the numberof termsfor
f (10), which, accordingto theformula} (n? + n) from thelastparagraphis
just 55. In this respect, the recursive approach is clearly more
computationally efficient than the partitioning approach.

Fourth, the intermediate sums generatedin the course of using
expressiorn(5) areat leastasmeaningfulasthosegeneratedn the courseof
usingexpressior(2). As we sawin section2, usingexpressior(2) involves
summingthe numberof ways of putting n alternativesinto a preference
ordering with one level (k = 1), the number of ways of putting n
alternativesnto a preferenceorderingwith two levels(k = 2), andsoon,
up to the numberof waysof putting n alternativesnto a preferenceordering
with nlevels(k = n). Thisinformationis meaningful,but the information
involvedin expression(5) is equallymeaningful:everytime this expression
is usedto calculatef (n), the userrecapitulateshe valuesof f () from 1 to
n — 1. Surelyanilluminating way of arriving at the valueof f (n) for some
n is to seehow that valueis basedon the valuesof f (n) for all the smaller
values ofn.

Overall, the recursive approachhas much to recommendit. The
partitioningapproachhasvalueaswell, but the recursiveapproactoffers a
different perspectivethat has distinct strengthsin terms of both the
efficiency and the meaningfulnes®f the calculationsit requires. It is an
important approachto solving the problem of the numberof preference
orderings.

Acknowledgements

| would like to thankmy father,JoeEgglestonfor helpingme with my
initial explorationsof the problemthis articlediscusses| would alsolike to
thank Jeff VanderKam,Rodolfo Torres,and especiallyJeremyMartin for
sharingtheir expertiseand directing me to severalpertinentcombinatorics
resources. Finally, I would like to thank the anonymousrefereefor this
journal whose suggestions led to several stylistic improvements.

References

1. J. L. Chandon,J. Lemaire,and J. Pouget,Dénombrementies quasi-
ordressur un ensembldini, Mathématique®t SciencedHumaines62
(1978) pp. 61-80.

2. J. Riordan,An introductionto combinatorialanalysis JohnWiley &
Sons, Inc., New York (1958).



32 THE MATHEMATICAL GAZETTE

3. E. W. Weisstein, Stirling number of the secondkind, MathWorld
accessed December 2014 at
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html

4. E.W. Weisstein Binomial coefficient,MathWorld accesse®ecember
2014 at http://mathworld.wolfram.com/BinomialCoefficient.html

5. J. P. Barthelemy,An asymptoticequivalentfor the numberof total
preorders on a finite sddiscrete Mathematic29 (1980) pp. 311-313.

6. R. W. Bailey, The numberof weak orderingsof a finite set, Social
Choice and Welfaré5 (1998) pp. 559-562.

7. N. J. A. Sloane,Online encyclopediaof integer sequencesaccessed
December 2014 at http://weis.org/A000670

8. A. C. Aitken, A problemin combinations,Edinburgh Mathematical
Notes28 (1933) pp. xviii-xxiii.

9. L. Comtet, Advancedcombinatorics: the art of finite and infinite
expansions (revised edition), D. Reidel Publishing Company,
Dordrecht, Holland (1974).

10. G. Kreweras,Une dualité élémentairesouventutile dansles problemes
combinatoiresMathématiques et Sciences Humaid¢$963) pp. 31-41.
doi: 10.1017/mag.2014.3 BEN EGGLESTON
Department of Philosophy, University of Kansas, Lawrence, KS 66045, USA
e-mail:eggleston@ku.edu



