University of Kansas, Fall 2006
Philosophy 666: Rational Choice Theory
Ben Egglestonó

test on game theory

(October 27, 2006)


  1. Answer all of the following questions on the answer sheets provided. You can write on this list of questions, but credit will be awarded only for answers written on answer sheets.
  2. Do not access any book, notebook, newspaper, calculator, computer, cell phone, or other possible source of inappropriate aid during the exam, do not leave the room before you are finished taking the exam, and be sure to finish the exam within this 50-minute class periodóno credit will be given for any work done after you access any possible source of inappropriate aid, after you leave the room for any reason, or after the end of this class period.
  3. When you are finished, be sure your name is written on each of your answer sheets, and turn them in. You do not need to turn in this list of questions.


Questions 1Ė3 involve zero-sum games, with each cell containing a number that represents the row playerís utility and the negation of the column playerís utility.
  1. Consider the following game:
  C1 C2 C3
R1 0 4 9
R2 9 6 8
R3 8 7 7

Using dominance considerations, identify the solution to this game. Write your answer as a strategy pair: (Rx, Cy), where x = 1, 2, or 3; and y is 1, 2, or 3.

  1. Explain why [(1/2 R1, 1/2 R2), (2/3 C1, 1/3 C2)] is not an equilibrium pair for the game represented by the following table. (Explain this in terms of the definition of an equilibrium pair, not just finding an equilibrium strategy pair and pointing out that it is different from the pair just mentioned.)
  C1 C2
R1 9 2
R2 5 8
  1. Find the values for p and q that make [(p R1, 1 Ė p R2), (q C1, 1 Ė q C2)] an equilibrium strategy pair for the game given in question 2. (Show your calculations.)
  2. Write any equilibrium strategy pair(s) for the following game. Is it a battle of wills, a prisonerís dilemma, both, or neither?
  C1 C2
R1 2, 8 8, 7
R2 3, 4 9, 1
  1. Write any equilibrium strategy pair(s) for the following game. Is it a battle of wills, a prisonerís dilemma, both, or neither?
  C1 C2
R1 3, 8 8, 3
R2 1, 4 9, 5
  1. This is a four-part problem.
    1. True or false? In a prisonerís dilemma, any equilibrium outcome is also a Pareto-optimal outcome.
    2. True of false? In a prisonerís dilemma, any Pareto-optimal outcome is also an equilibrium outcome.
    3. True or false? In a prisonerís dilemma, there is always at least one outcome that is both an equilibrium outcome and an Pareto-optimal outcome.
    4. True or false? In a prisonerís dilemma, no equilibrium outcome is a Pareto-optimal outcome.
  2. Why is it that, in a particular round of an iterated prisonerís dilemma, it might be rational for a player to choose a different strategy than the one that would be dominant if he or she were in a non-iterated, one-shot, standard prisonerís dilemma?
  3. Suppose two people are in a bargaining situation and that, after being told about the Nash approach to such situations, they report that (A) the Nash approach does not identify a unique solution to their problem, because they have found that (B) there are two points with the same Nash score, with that score being as high as the Nash score of any other achievable point. How would you go about proving that they are mistaken about B? (You do not have to supply any such proof; you just have to explain how such a proof would proceed.)
  4. Suppose that, in some bargaining situation, player 1ís maximum possible payoff is 10, player 2ís maximum possible payoff is 8, and the no-agreement point is (4, 3).
    1. What is the Nash score of the outcome (7, 5)?
    2. What is relative benefit of player 1 under the outcome (7, 5)?
  5. In an n-person game (with a characteristic function, coalitions, imputations, and so on), what conditions must be satisfied in order for one imputation to dominate another with respect to some coalition? As you state each condition, also give the motivation, or meaning, behind it.

Instructions, revisited:

As stated in item 3 of the instructions, you do not need to turn in this list of questions.